Assignment 3

Hand in no. 1, 4, 5 and 6 by September 26.

1. A bounded function f on $[a, b]$ is said to be locally Lipschitz continuous at $x \in[a, b]$ if there exist some L and δ such that

$$
|f(y)-f(x)| \leq L|x-y|, \quad \forall y \in(x-\delta, x+\delta)
$$

Show that f is Lipschitz continuous at x.
2. Let f be a function defined on (a, b) and $x_{0} \in(a, b)$.
(a) Show that f is Lipschitz continuous at x_{0} if its left and right derivatives exist at x_{0}.
(b) Construct a function Lipschitz continuous at x_{0} whose one sided derivatives do not exist.
3. Can you find a cosine series which converges uniformly to the sine function on $[0, \pi]$? If yes, find one.
4. A sequence $\left\{a_{n}\right\}, n \geq 0$, is said to converge to a in mean if

$$
\frac{a_{0}+a_{1}+\cdots+a_{n}}{n+1} \rightarrow a, \quad n \rightarrow \infty
$$

(a) Show that $\left\{a_{n}\right\}$ converges to a in mean if $\left\{a_{n}\right\}$ converges to a.
(b) Give a divergent sequence which converges in mean.
5. Let D_{n} be the Dirichlet kernel and define the Fejer kernel to be $F_{n}(x)=\frac{1}{n+1} \sum_{k=0}^{n} D_{k}(x)$.
(a) Show that

$$
F_{n}(x)=\frac{1}{2 \pi(n+1)}\left(\frac{\sin \left(\frac{n+1}{2}\right) x}{\sin x / 2}\right)^{2}, \quad x \neq 0
$$

(b) Let

$$
\sigma_{n} f(x)=\frac{1}{n+1} \sum_{k=0}^{n} S_{k} f(x)
$$

Show that for every $x \in[-\pi, \pi], \sigma_{n} f(x)$ converges uniformly to $f(x)$ for any continuous, 2π-periodic function f. Hint: Follow the proof of Theorem 1.5 and use the non-negativity of F_{n}.
6. Let f and g be two continuous, 2π-periodic functions whose Fourier series are the same. Prove that $f \equiv g$. Hint: Show that $\int_{-\pi}^{\pi} f g d x=0$ for all finite trigo series and apply Weierstrass approximation theorem.
7. Let $f, g \in R_{2 \pi}$. Show that $\int_{-\pi}^{\pi}(f-g)^{2}(x) d x=0$ and conclude that f and g are equal almost everywhere.

